Calculus - Derivatives

Juho Välimäki — https://vlimki.dev

March 3, 2024

1 Basics

1.1 Definitions

- The derivative of a function f, denoted $\frac{d}{d x} f(x)$ or $f^{\prime}(x)$ is essentially the instantenous rate of change of f at x.
- The official definition for the derivative $\frac{d f}{d x}$ is $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
- If f has a derivative at $x=c, f$ is continuous at $x=c$.
- The second derivative, denoted $f^{\prime \prime}(x)$ or $\frac{d^{2} f}{d x^{2}}$ of a function is the derivative of its derivative. If a function is differentiable, that means its derivative is also differentiable.
- In the same way, you can denote the nth derivative of a function as $\frac{d^{n} y}{d x^{n}}$.

Example 1. Evaluate $\frac{d}{d x} f(x)$, where $f(x)=x^{2}$
Solution: $\quad \frac{d}{d x} f(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}$ $=\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-x^{2}}{h}=\lim _{h \rightarrow 0} \frac{h(2 x+h)}{h}=\lim _{h \rightarrow 0} 2 x+h=2 x$

Example 2. Evaluate $\frac{d p}{d q}$, where $p=q^{3 / 2}$

Solution: Knowing that $\frac{d}{d x} x^{n}=n x^{n-1}$, we know that $\frac{d p}{d q}=\frac{3}{2} q^{3 / 2-1}=$ $\frac{3}{2} q^{1 / 2}=\frac{3}{2} \sqrt{q}$

1.2 Rules

- The sum rule states that the derivative of a sum $\frac{d}{d x} f(x)+g(x)$ is $f^{\prime}(x)+$ $g^{\prime}(x)$.
- The difference rule is an extension of the sum rule that states that the derivative of a difference is the difference of their derivatives.

$$
\frac{d}{d x} f(x)-g(x)=\frac{d}{x} f(x)+(-g(x))=f^{\prime}(x)+\left(-g\left(^{\prime} x\right)\right)=f^{\prime}(x)-g^{\prime}(x)
$$

- The product rule states that the derivative of a product $\frac{d}{d x} f(x) \cdot g(x)$ is $f(x) \cdot g^{\prime}(x)+f^{\prime}(x) \cdot g(x)$.
- The quotient rule states that the derivative of a quotient $\frac{d}{d x} \frac{f(x)}{g(x)}$ is $\frac{g^{\prime}(x) \cdot f(x)-f^{\prime}(x) \cdot g(x)}{g^{2}(x)}$.
- The derivative for exponential functions of form a^{x} is $L * a^{x}$ where L is some constant. L is the derivative of a^{x} at $x=0$.
- For the natural exponential function $e^{x}, \mathrm{~L}$ is 1 . So the derivative of e^{x} is e^{x}.

1.3 Derivatives and Instantaneous Rate of Change

- Derivatives can be utilized in physics for example, where you're being asked the velocity of an object at a particular point in time.
- Consider a function s (distance) of time t. To get the speed v at any instantaneous point in time, you use the derivative $\frac{d s}{d t}$. You check how much the distance changes in relation to time for a certain interval.
- The definition of velocity (instantenous velocity) is given as $\frac{d s}{d t}$.
- The formula for free-fall distance is defined as $s=\frac{1}{2} g t^{2}$, where $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$. So this gets us to $4.9 t^{2}$. Here we can use the derivative of $s, \frac{d s}{d t}=9.8 t$.
- So after an object has fallen for 10 seconds $(t=10)$, the velocity of it will be equal to $9.8 \cdot 10^{2}=980 \mathrm{~m} / \mathrm{s}$
- Acceleration is defined as the derivative of velocity. $\frac{d}{d t} 9.8 t=9.8 \mathrm{~m} / \mathrm{s}$.

1.4 Derivatives of Trigonometric Functions

- $\frac{d}{d x} \sin (x)=\cos (x)$
- $\frac{d}{d x} \cos (x)=-\sin (x)$

1.5 The Chain Rule

- The chain rule allows for deriving function compositions $(f \circ g)(x)$.
- The power chain rule extends the chain rule, such that $\frac{d}{d x} u^{n}=n u^{n-1} \cdot \frac{d x}{d u}$
- Consider a function $y=f(u)$ and a function $u=f(x)$. The derivative $\frac{d y}{d x}$ is given by $\frac{d u}{d x} \cdot \frac{d y}{d u}$.

Example 1. Evaluate the derivative of $y=\left(3 x^{2}+1\right)^{2}$.
Solution: The function is composed of two functions: $f(g)=g^{2}$ and $g(x)=3 x^{2}+1$. The derivative $\frac{d f}{d x}$ will be given by $\frac{d f}{d g} \cdot \frac{d g}{d x}$. Considering that $\frac{d g}{d x}=6 x$ and $\frac{d f}{d g}=2 g$, the derivative $\frac{d f}{d x}=2\left(3 x^{2}+1\right) \cdot 6 x=36 x^{3}+12 x$.

Example 2. Evaluate the derivative of $y=e^{\cos ^{2}(\pi t-1)}$.
Solution: $\quad \mathrm{f}(\mathrm{x})$ is composed of multiple functions, $e^{u}, u=y^{2}, y=\cos (z), z=$ $\pi t-1$.

$$
\begin{aligned}
\frac{d y}{d t} & =\frac{d}{d t} e^{\cos ^{2}(\pi t-1)} \cdot \frac{d}{d t} \cos (\pi t-1) \cdot \frac{d}{d x} \cos ^{2}(\pi t-1) \\
& =e^{\cos ^{2}(\pi t-1)} \cdot(-\sin (\pi t-1)) \cdot \pi \cdot 2 \cdot \cos (\pi t-1)
\end{aligned}
$$

1.6 Derivatives of Inverse Functions and Logarithms

- The derivative of the inverse function of $f,\left(f^{-1}\right)^{\prime}(x)$ is $\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}$.
- $\frac{d}{d x} a^{x}=a^{x} \cdot \ln a$. In the same way, $\frac{d}{d x} e^{x}=e^{x} \cdot \ln e=e^{x}$.
- $\frac{d}{d x} \ln x=\frac{1}{x}$. The chain rule extends this to: $\frac{d}{d x} \ln u=\frac{1}{u} \cdot \frac{d u}{d x}$.
- The change-of-base formula states that $\log _{a}(x)=\frac{\ln x}{\ln a}$. Hence $\frac{d}{d x} \log _{a}(x)=$ $\frac{d}{d x} \frac{\ln x}{\ln a}$. This simplifies to the following rule: $\frac{d}{d x} \log _{a}(x)=\frac{1}{x \ln a}$.
- The chain rule extends this to $\frac{d}{d x} \log _{a} u=\frac{1}{u \ln a} \cdot \frac{d u}{d x}$.

